
So, you want to be a Hydrographer?

Jonathan Beaudoin, Managing Director HydroOctave Consulting Inc. 2024 OSBEELS Symposium, Sept 26 & 27, 2024

What might it take for land surveyors to begin doing hydrographic work?

Commonalities and differences between the two types of surveying?

Challenging facets of doing survey work on or in the water?

After this presentation ...

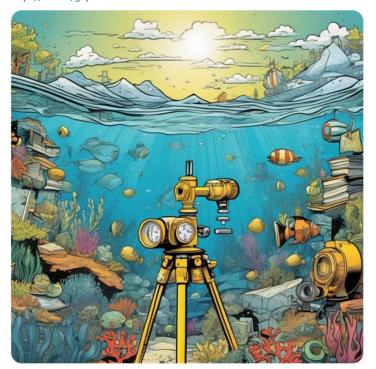
You'll Know What You Don't Know You'll Know What to Google You'll Know That It's Possible You'll Know How to Get Help

Gathering Ideas, Advice, Musings & A Few Rants

ChatGPT

What advice would you give to a land surveyor wanting to do work in the field of hydrography?

ChatHumanity


One-on-one Conversations
Questionnaire via LinkedIn

I've been asked to give a talk about hydrographic surveying at a land surveyors conference in a few weeks. I've decided to discuss what it might be like for a land surveyor to begin doing work in hydrography. I have my own perceptions but I'd like to round them out with viewpoints from other people. If you have any insights to share, I'd appreciate to hear your thoughts via the questionnaire link below:

https://lnkd.in/g7p7BTGH

۩♥ Elias Adediran and 64 others

7 comments • 2 reposts

LinkedIn Comments

Mark Biddulph • 1st

2d (edited) ***

Chief Operations Officer at Seismic Asia Pacific

It's a steep learning curve for someone coming from land to Hydro. With clients from all experiences both land air engineering and Hydro. SBES is doable fairly easily, its when you move into MBES 3DSS and SSS the learning curve that I have witnessed steeply rises for them.

Troy Greene • 1st

2d ***

Instructor at Centre of Geographic Sciences

Total station theory transferable to water: still direction and distance

Joshua Sampey (He/Him) • 1st

Technical Support at HYPACK, a Xylem Brand

I've found that many are often unaware of beam footprints and think a sonar is the same as a survey rod point! The same point at any rod length.

2d ***

Alex Howden • 2nd

1d ***

Owner/President at CRA Canada Surveys INC

Its doable, as said single beam is easy to attain.

Especially with a relatively flat bottom.

With steeper bottom profiles I've witnessed issues with latency and survey planning. Sonar beam width at depth, sounding at shoalest location within the beam footprint. ...more

Straud Armstrong • 1st

2d ***

Director of Product and Sales at HYPACK, a Xylem Brand

They tend toward negativity, relative to depth

Funny · C 6

Jonathan Beaudoin • You Hydrographic Consultant & Multibeam Nerd 2d • ©

Questionnaire

What do land surveying and hydrographic surveying have **most** in common?

27 responses

What would be the most significant challenge for a land surveyor wishing to try out hydrographic surveying? Why?

28 responses

If you have a land surveying background and you've managed to gain some success doing hydrographic work, what advice would you give to someone thinking of doing the same?

24 responses

I've been asked to give a talk about hydrographic surveying at a land surveyors conference in a few weeks. I've decided to discuss what it might be like for a land surveyor to begin doing work in hydrography. I have my own perceptions but I'd like to round them out with viewpoints from other people. If you have any insights to share, I'd appreciate to hear your thoughts via the questionnaire link below:

https://lnkd.in/g7p7BTGH

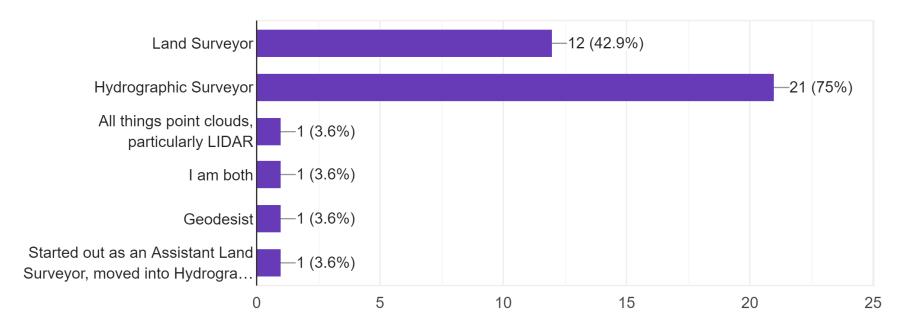
What do land surveying and hydrographic surveying have **least** in common?

28 responses

Following on from the previous question, how could a land surveyor overcome that challenge?

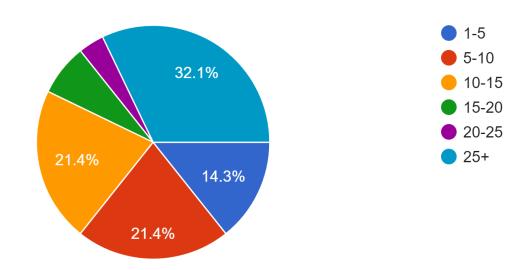
28 responses

Is there anything else you would like to share about this topic?


20 responses

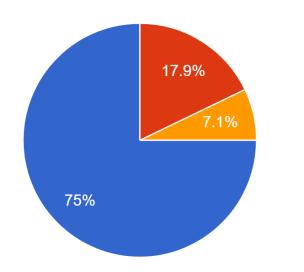
Questionnaire

What is your primary specialty/background?


28 responses

Questionnaire

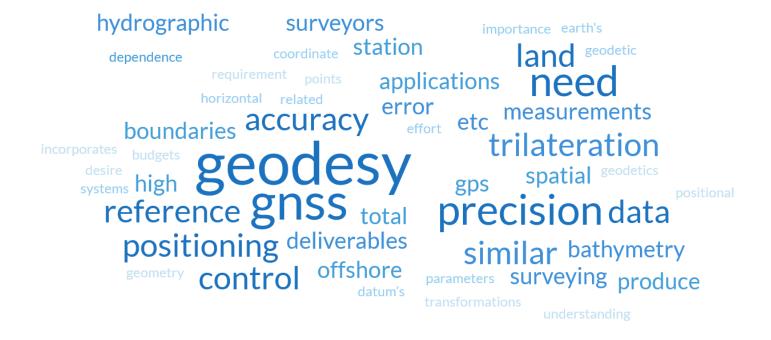
How many years of experience do you have as a surveyor? 28 responses



Questionnaire

What sector do you fall in?

28 responses



What do land surveying and hydrographic surveying have **most** in common?

27 responses

What do land surveying and hydrographic surveying have **most** in common?

27 responses

Geodesy

Dependence on geodesy and related geodetic parameters in effort to reference deliverables

Practices

Requirement for accuracy, precision

Understanding of error budgets

Need for procedures, quality control, & due diligence to ensure measurements meet project requirements

Deliverables

Spatial data linked to a spatial reference frame Plans, contours, elevation models, charts, spot heights, topographic maps, volumes

Tools

GNSS, leveling

GIS and CAD software

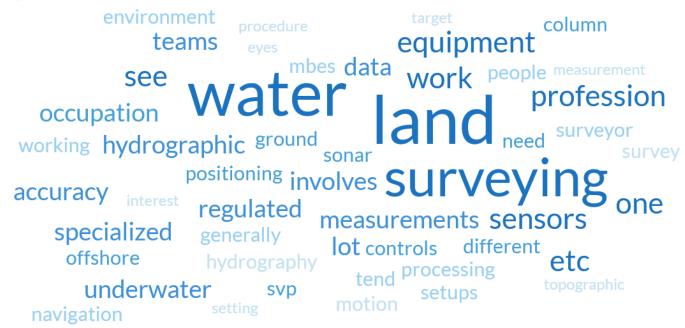
Satellite corrections

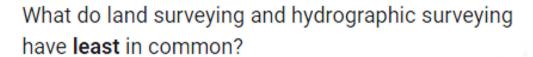
Computers

Math, Trigonometry, Geometry, Physics

Triangulation, trilateration and traversing

You don't need to be a Mathlete but it needs to add up


Land Surveyor Advantage


You know ALL of this and have mastered it Entrants from other domains start from scratch

What do land surveying and hydrographic surveying have **least** in common?

28 responses

28 responses

Water

Surveying on and through water

Z positive down, sometimes

Boats - Seasickness, Close quarters, Safety

Cannot "see" what you map

Underwater Acoustics

Mobile Mapping

Everything is kinematic

Motion compensation

Incredible need for real-time integration & QC

Positioning, Geodetics, Datums

Ground control non-existent offshore

Real-time GNSS aiding (RTK, WAAS)

Vertical datums offshore?

Equipment

Acoustic sensors - Single beam, sidescan, multibeam

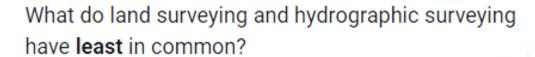
Underwater positioning systems

Inertial Navigation Systems (INS)

3D orientation

Speed of sound sensors (surface and profiling)

Relative location/orientation of all sensors on platform


Precise timing

Measurements, Data & Processing

Datagrams from sensors, MBES data processing

Navigation and Processing Software

Calibration & Measurement procedures

28 responses

Accuracy & Repeatability

Dynamic 3D positioning at surface is only half the battle
Range/bearing measurements through water —
Oceanography, currents, T&S, refraction
Accuracy & Repeatability is challenging
Difficult to independently verify accuracy

IT & Computer Skills

Networking
Electronic communications – wired, wireless
Firewalls

Teams & Lifestyle

Hydrographic teams generally larger & multicultural teams

Very mobile profession – work anywhere in the world Away from home a lot

Regulation & Certification

Land surveying well regulated, infrastructure in place for education & certification, typically at state level

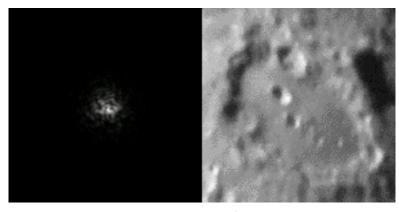
Certification just starting with hydrography, typically at national level

Becoming the norm to see Certification required for some contracts

Boats

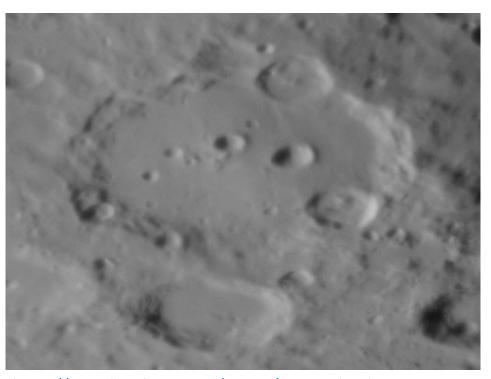
"The two best days in a boat owner's life are the day they buy a boat and the day they sell it"

"A boat is a hole in the water you throw your money in"



"The only thing better than owning a boat is having a friend that owns a boat."

Maintenance, certification, insurance, liability, safety, training, weather, etc



Underwater Acoustics

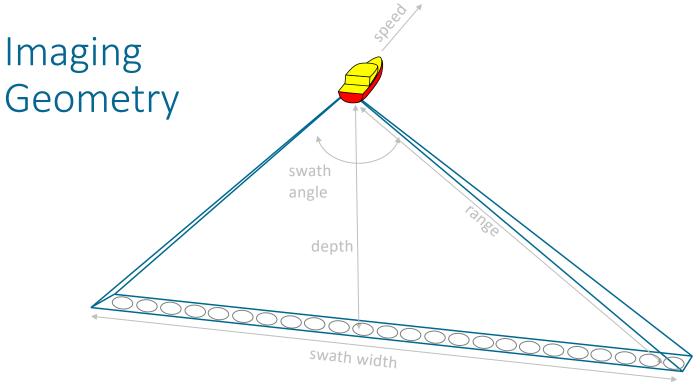
Variations in Seeing on Star and Moon Credit: The Schools' Observatory

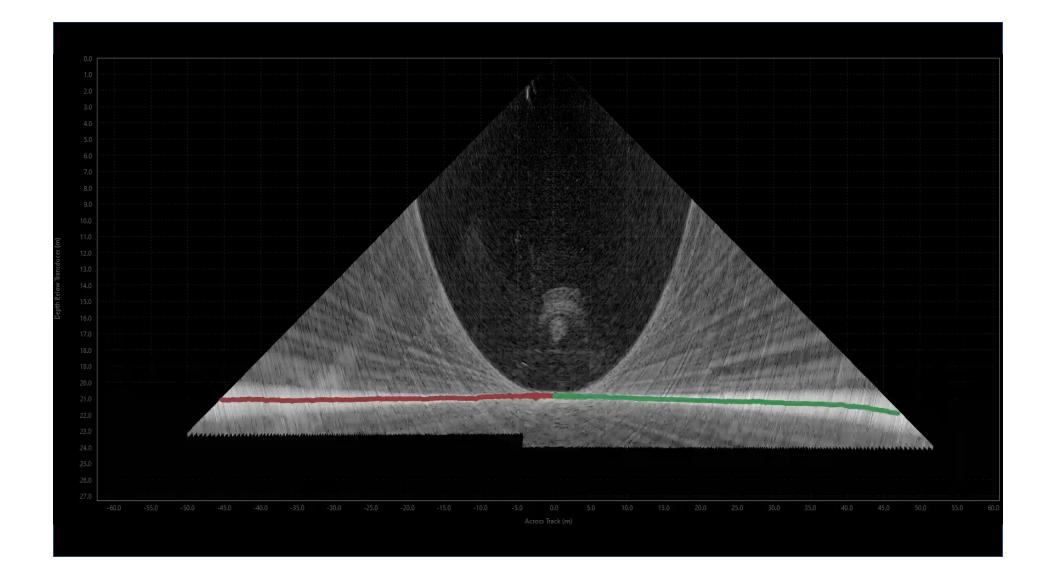
Temperature & Salinity layers cause acoustic refraction, distorting the travel path from acoustic sensor to target

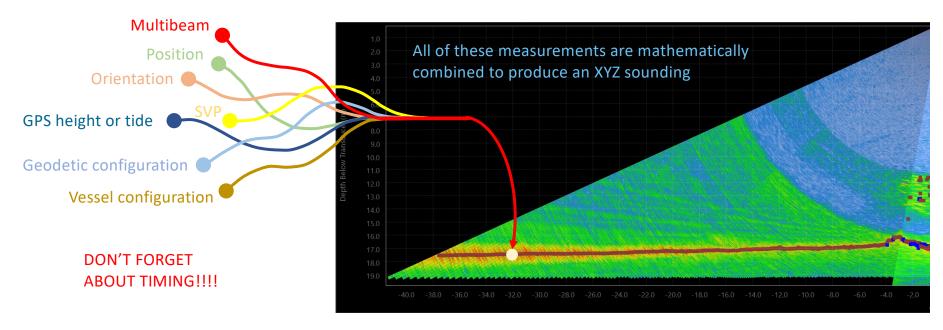
https://www.handprint.com/ASTRO/seeing1.html

Tools of the Trade: Hardware

Multibeam Echosounders

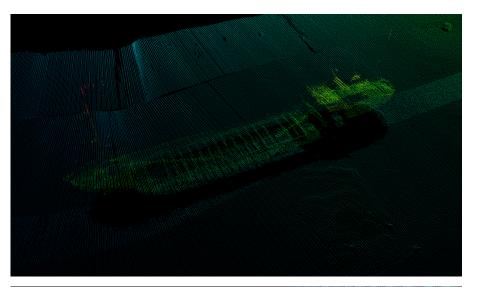


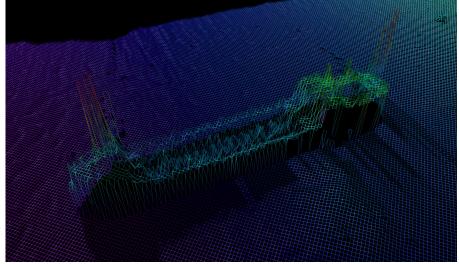




Hydrographic Processing Primer

Typical deliverables are grids, point clouds
Input data comes from several sensors and config/metadata

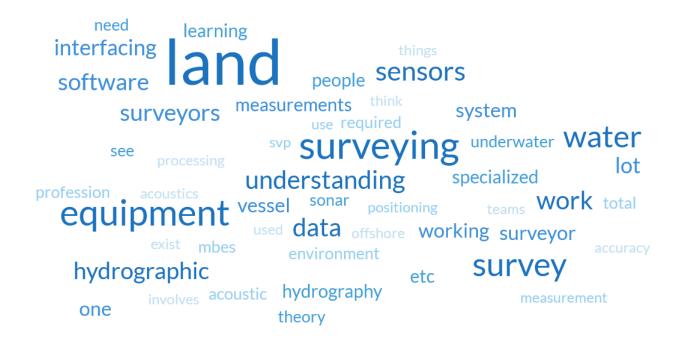

Point Clouds and Grids


Point Cloud

Set of 3D point measurements
Distribution is often uneven
Some points are wrong (outliers/noise)

Grid

3D lattice with fixed interval
Point clouds used to build grid
Easy to display
Easy to design algorithms, e.g.
contouring, slope
Efficient for
storage/transmission/algorithms



What would be the most significant challenge for a land surveyor wishing to try out hydrographic surveying? Why?

28 responses

What would be the most significant challenge for a land surveyor wishing to try out hydrographic surveying? Why?

28 responses

Complexity

Multiple sensors

Multiple software packages – Real-time & Post-Processing Integration of hardware & software

Workflow documentation, quality assurance

Configuration of geodetics, especially vertical datums

Mobilization is high stress, difficult

IT, networking, electronic communications

Acoustics

Understanding of acoustic sensors

Propagation of sound in water

Interaction of sound with seabed

Acoustic aspects impacting choice, configuration and operation of instrumentation

Boats

Dynamic observation platform – Seasickness, Data Quality Being comfortable at sea for extended periods of time Understanding vessel, ocean dynamics Finding a captain

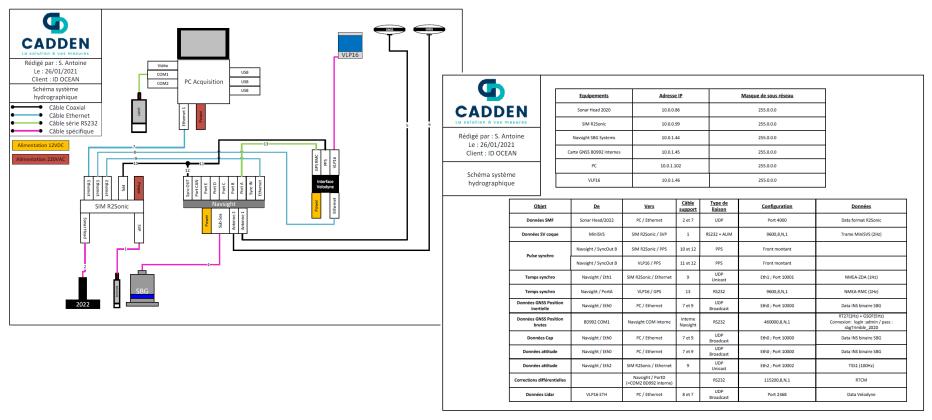
Calibration, Precision & Accuracy

Calibrating the equipment properly

Processing/deliverables significantly more complex

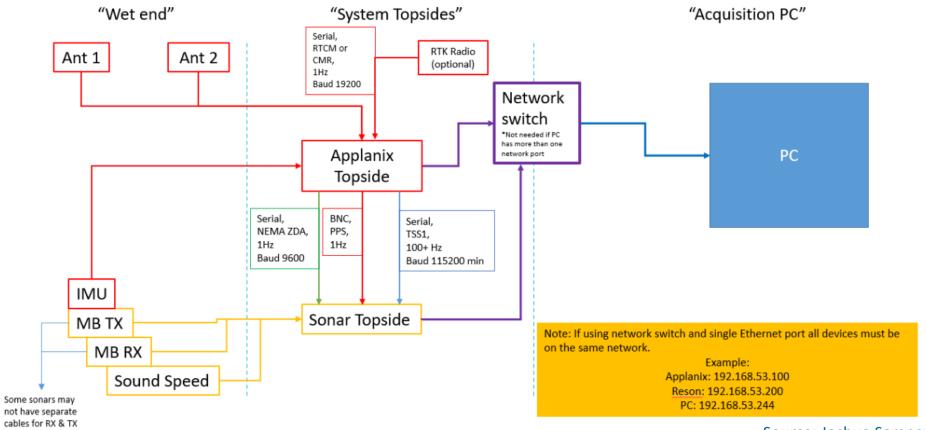
Accepting less accurate data (within +/- 0.10)

Education & Training


Usually little hydrography in land survey education curriculum Hydrographic training courses are significant time investment

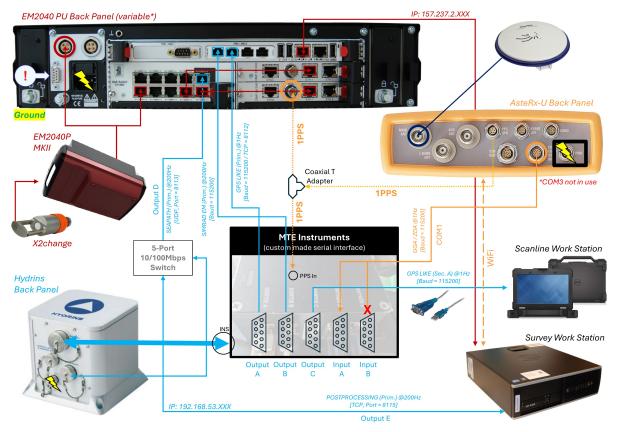
Lifestyle

Lots of travel, limited contact with family and loved ones Cramped working conditions Work schedule/lifestyle

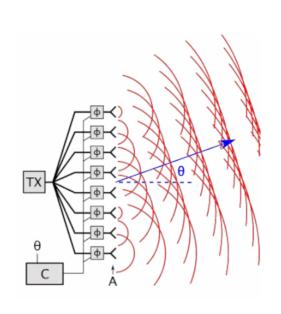


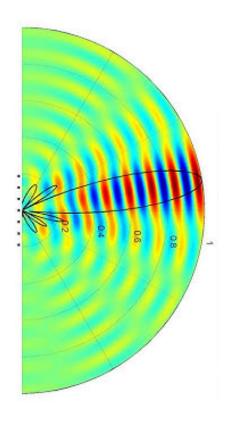
Wiring Diagrams

Source: Steven LE BARS


Wiring Diagram

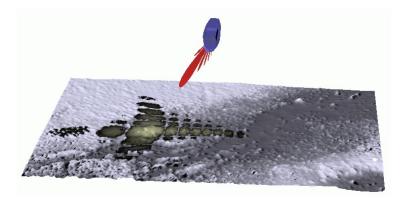
Source: Joshua Sampey

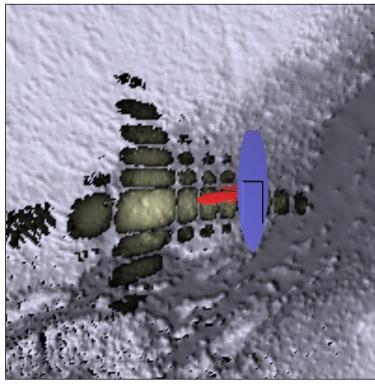

Wiring Diagrams




Source: Ruaihri Strachan

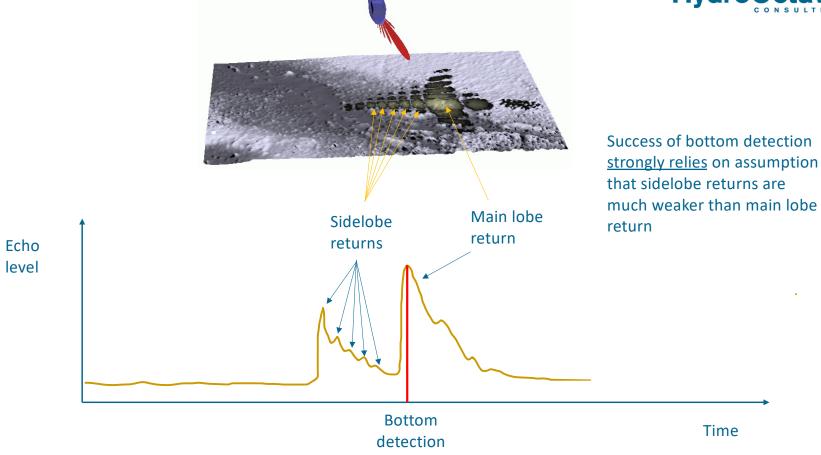
Beam Forming & Steering





Multibeam Imaging Geometry

Beam pattern illumination
Illustrates intersection of main lobes and side lobes



Images from UNB GGE3353 Imaging and Mapping II Credit: Dr. J.E. Hughes Clarke

Following on from the previous question, how could a land surveyor overcome that challenge?

28 responses

Is there anything else you would like to share about this topic?

20 responses

If you have a land surveying background and you've managed to gain some success doing hydrographic work, what advice would you give to someone thinking of doing

the same?

24 responses

learning knowledge professional education opportunities experiences professionals set things beyond survey people land physical training try industry hydro others already practical just good study hydrographic courses read

Training

Educate yourself – Formally and informally

Access sources of information and hands-on workshops

Attend industry seminars & webinars

Seek out internships and similar opportunities

Find practical training to augment classroom-based instruction

Seek out smaller courses, micro credentials

Learn fundamentals – Acoustics, sonars, software, interfacing

Get Advice

Be advised by a hydrographer for planning and prep

Consider partnering or a strategic hire

Engage with specialists

Spread your wings into different areas slowly and strategically

Study the Technology

Understanding the technology

Focus on physical theory of sonars

Read manuals

Build Your Network

Networking is key - Meet professionals across industry

Attend Geospatial events (physical and virtual)

Be curious & learn, ask lots and lots of questions

Get On The Water

Get in the field, it is the best teacher

Join as may installations and mobilizations as possible

See if you have sea legs

See if you have ability to work with several people for possibly

many days/weeks in a confined space

Join a hydrographic survey company

Strategic Employment

Work for a company that has experts you can learn from

Find a workplace / environment where others are happy to support and promote your learning in new areas of the geospatial sector

Attitude

Be prepared for speed bumps along the way

Continue to push for hydrography

Keep an open mind

Be willing to connect the dots of what you already know and what you hope to learn

Adapting

It takes time to adapt, but VERY achievable

Will, persistence & desire for knowledge will propel you

Need to focus on mastery of new tools and techniques

Continual Professional Development

Continual Learning

Maintain and grow your skills

Opportunity & Advantage

Shortage of skilled hydrographic surveyors

Many non-surveyors filling the gaps

Land surveyor advantage? Survey, Geodesy, Positioning, Charting

Land surveyors have more overlap with hydro than other professions, e.g. civil engineering, GIS technician

Education & Training

INTERNATIONAL FEDERATION OF SURVEYORS INTERNATIONAL HYDROGRAPHIC ORGANIZATION INTERNATIONAL CARTOGRAPHIC ASSOCIATION

STANDARDS OF COMPETENCE FOR CATEGORY "A" HYDROGRAPHIC SURVEYORS

> Publication S-5A First Edition Version 1.0.2 - June 2018

"Standards indicate the minimum competences necessary for hydrographic surveyors. Standards recognize two levels of competence. Category "A" programmes introduces competences from the underlying principles level. Category "B" programmes introduce the competences from a practical level.

The intention is that a Category "A" individual with appropriate experience, would be a senior professional in their chosen field (government, industry, academia). Category "B" individuals with appropriate experience would be technical professionals leading and delivering products and services to meet specifications and outcomes."

Education & Training – Cat A

https://ccom.unh.edu/certification

2-year commitment

Education & Training — Cat B

		MODULE	STUDY PERIOD
	GSR	Geodesy and Geo-referencing	
	POS	Positioning	October - December
	ENV	Environment	
	TID	Tide and water levels	
E-learning	BAT	Bathymetry	January - March
	NSC	Nautical Science	
	HYD	Hydrography	
	HDPM	Hydrographic Data Processing and Management	March - May
	LA	Legal Aspects	
On site (Rimouski)			
on one (ramouom)	PFCT	Practical exercise & Final field project (7 weeks)	June - July

https://www.cidco.ca/en/education-and-training/hydrographic-survey-category-b-course

10-month commitment

Education & Training – Microcredentials

Multibeam Acquisition Fundamentals

A practical workshop style training for multibeam hydrographic surveying

Overview

This course will fill help you understand which sonar settings and survey design decisions are most impactful towards your survey goals. Practical instruction demonstrates clearly how surveyors can add value in their operational decision making. Theoretical topics are covered lightly when necessary to give practical instruction some backing without overwhelming the core concepts. The aim is to provide practical and actionable ideas to help a hydrographic surveyor the very next time they go to the field, making confident and informed decisions that achieve results. In-class instruction is cemented with time in the field operating hardware and software discussed in the classroom.

Key Learning Outcomes

- Learn to estimate your ability to detect, resolve and characterize objects on the seafloor with understanding of multibeam resolution fundamentals.
- Master the art of juggling vessel speed, swath width and ping rate to achieve targeted sounding density (hit count) to ensure target detection/resolution.
- Understand major sources of uncertainty, how to plan for them beforehand and how to monitor and adapt your survey operations to achieve accuracy targets.

Topics

Multibeam Resolution

- a. Review of Multibeam Fundamentals: Imaging Geometry
- b. Review of Resolution: Beamwidth, beam steering and pulse length
- c. Practical sensor specific advice and tips
- Multibeam Density (Hit Count)
 - a. Speed, Swath/Beam geometry, Ping rate, Dual/Single Swath
 - b. Real-time Monitoring of Density
 - c. Other Effects: Motion effects, line planning/running, stabilization
 - d. Practical sensor specific advice and tips

Multibeam Uncertainty Survey Accuracy

- a. Survey Accuracy Standards & Orders
- b. Achieving Standards In Theory (TPU Tune-Up) & In Practice
- c. Practical sensor specific advice and tips

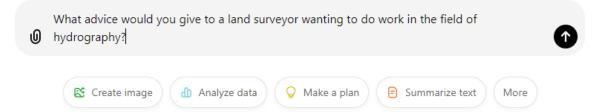
4. Multibeam Backscatter

- a. Review of Backscatter Fundamentals
- b. Impact of sonar settings changes
- c. Backscatter Acquisition General, Sensor Specific & Software Specific
- Geodesy, GNSS & INS Positioning
- Common Horizontal datums and transformations
 Vertical datums, Sonaration Models, VDATUM
- Vertical datums, Separation Models, VDATUM
- c. Real-Time Corrections & Reduction to Datum
- d. Post-Processed GNSS

Sausalito, California, Nov 19-22, 2024

Tuition: \$2,650 (covers tuition only) Format: In-Person, Classroom & Vessel Based Registration Contact: info@hydrooctave.com 4-day course on multibeam acquisition fundamentals, classroom & vessel based

4-day commitment


ChatHumanity vs ChatGPT

- 1. Expand Your Knowledge Base
- 2. Get Proper Certification and Training
- 3. Understand the Equipment
- 4. Focus on GIS and Data Processing
- 5. Gain Field Experience
- 6. Develop Marine Navigation Skills
- 7. Stay Updated on Industry Trends

1. Expand Your Knowledge Base

Study Hydrography: Gain a solid understanding of hydrographic principles, including the mapping and charting of bodies of water, underwater topography, tides, and currents. A land surveyor's skills in measurements and geospatial analysis can transfer well, but understanding the marine environment is critical.

Learn Bathymetric Surveying: Bathymetry deals with measuring the depths and shapes of underwater terrain. Familiarize yourself with techniques and technologies specific to underwater surveying, such as sonar systems (single and multi-beam), side-scan sonar, and LiDAR (Light Detection and Ranging).

2. Get Proper Certification and Training

Certifications: Consider obtaining certification in hydrographic surveying. Look for programs recognized by international bodies such as the International Federation of Surveyors (FIG) or the International Hydrographic Organization (IHO). Level 1 or 2 hydrographic surveyor certification can add to your credibility.

Hydrography Courses: Enroll in courses related to marine geodesy, oceanography, and remote sensing. Institutions like the International Hydrographic Organization (IHO) or local maritime academies often offer specialized training.

3. Understand the Equipment

Familiarize Yourself with Hydrographic Tools: Hydrographic work often uses different technology than land surveying. Tools like echo sounders, GPS systems adapted for marine use, ROVs (Remotely Operated Vehicles), and acoustic Doppler current profilers (ADCP) are important to master.

Surveying in Marine Environments: Learn about the challenges and intricacies of operating surveying equipment in an aquatic environment, such as adjusting for water density, waves, currents, and tides, which influence accuracy.

4. Focus on GIS and Data Processing

GIS and Data Analysis: Much of hydrographic data is processed and interpreted through Geographic Information Systems (GIS). Mastering GIS software (e.g., ArcGIS, QGIS) is essential for visualizing and analyzing underwater terrain and features.

Data Accuracy and Precision: Hydrography requires a high level of precision, particularly when surveying areas for safe navigation or infrastructure projects. Ensuring that your data collection methods account for underwater distortions and are processed accurately is crucial.

5. Gain Field Experience

Hands-On Practice: Working on hydrographic vessels, helping with surveys for ports, harbors, or offshore infrastructure, and participating in real-world hydrographic projects can provide valuable experience. Seek internships or partnerships with hydrographic firms to get practical exposure.

Understand Environmental Factors: Water bodies are dynamic. Tides, weather patterns, and salinity can affect survey conditions. Developing an understanding of these variables is key to successful hydrographic work.

6. Develop Marine Navigation Skills

Maritime Navigation: Learn the basics of marine navigation, including chart reading and the use of electronic navigation systems. These are essential for coordinating hydrographic surveys and ensuring safe and effective work on water bodies.

7. Stay Updated on Industry Trends

Emerging Technologies: Stay informed about advancements in hydrographic equipment and methodologies, such as satellite-derived bathymetry, autonomous survey vessels (USVs), and integrated GIS platforms for marine data.

Attend Industry Events: Networking and participating in conferences or workshops related to hydrography will help you stay current with the latest trends and innovations.

Take Home Messages

Similarities?

Geodetics
Positioning
Uncertainty/Error Budgets
Duty of Care for

measurements

Measurement Geometry

Differences?

Surveying on an unstable platform Acoustics, oceanography

You can't see what you measure

Achievable accuracy, precision and resolution

Very different lifestyle

Regulation, certification are different and evolving

Success determinants?

Grit

Determination

Persistence

Perseverance

Way Forward?

Land Surveyors have Advantage

Get advice

Map out a plan

Get training

Questions?

Jonathan Beaudoin jonathan@hydrooctave.com